Module mathcomp.analysis.topology_theory.discrete_topology
From HB Require Import structures.From mathcomp Require Import all_ssreflect all_algebra all_classical all_reals.
From mathcomp Require Import topology_structure uniform_structure.
From mathcomp Require Import order_topology pseudometric_structure compact.
# Discrete Topology
```
discreteNbhsType == neighborhoods are principal filters
discrete_ent == entourages of the discrete uniformity
topology, equipped with the Uniform
structure
discrete_ball == singleton balls for the discrete metric,
equipped with the Uniform structure
discreteTopologicalType == types with a discrete topology
discreteOrderTopologicalType == an order type with the discrete topology
pdiscreteTopologicalType == pointed type with the discrete topology
pdiscreteOrderTopologicalType == pointed, ordered, and discrete
discreteUniformType == a uniform space where the diagonal is an
entourage
discretePseudoMetricType == a pseudometric space where the only balls
are singletons
discrete_topology T == alias attaching discrete structures for
topology, uniformity, and pseudometric
```
Import Order.TTheory GRing.Theory Num.Def Num.Theory.Local Open Scope classical_set_scope.
Local Open Scope ring_scope.
HB.mixin Record Discrete_ofNbhs T of Nbhs T := {
nbhs_principalE : (@nbhs T _) = principal_filter;
}.
#[short(type="discreteNbhsType")]
HB.structure Definition DiscreteNbhs := {T of Nbhs T & Discrete_ofNbhs T}.
Definition discrete_ent {T} : set (set (T * T)) :=
globally (range (fun x => (x, x))).
Note: having the discrete topology does not guarantee the discrete
uniformity. Likewise for the discrete metric. Consider set 1/n | n in R
HB.mixin Record Discrete_ofUniform T of Uniform T := {uniform_discrete : @entourage T = discrete_ent
}.
Definition discrete_ball {R : numDomainType} {T} (x : T) (eps : R) y : Prop :=
x = y.
HB.mixin Record Discrete_ofPseudometric {R : numDomainType} T of
PseudoMetric R T := {
metric_discrete : @ball R T = @discrete_ball R T
}.
#[short(type="discreteTopologicalType")]
HB.structure Definition DiscreteTopology :=
{ T of DiscreteNbhs T & Topological T}.
#[short(type="discreteOrderTopologicalType")]
HB.structure Definition DiscreteOrderTopology d :=
{ T of Discrete_ofNbhs T & OrderTopological d T}.
#[short(type="pdiscreteTopologicalType")]
HB.structure Definition PointedDiscreteTopology :=
{ T of DiscreteTopology T & Pointed T}.
#[short(type="pdiscreteOrderTopologicalType")]
HB.structure Definition PointedDiscreteOrderTopology d :=
{ T of Discrete_ofNbhs T & OrderTopological d T & Pointed T}.
#[short(type="discreteUniformType")]
HB.structure Definition DiscreteUniform :=
{ T of Discrete_ofUniform T & Uniform T & Discrete_ofNbhs T}.
#[short(type="discretePseudoMetricType")]
HB.structure Definition DiscretePseudoMetric {R : numDomainType} :=
{ T of Discrete_ofPseudometric R T & PseudoMetric R T & DiscreteUniform T}.
HB.builders Context T of Discrete_ofNbhs T.
Local Lemma principal_nbhs_filter (p : T) : ProperFilter (nbhs p).
Proof.
Local Lemma principal_nbhs_singleton (p : T) (A : set T) : nbhs p A -> A p.
Proof.
Local Lemma principal_nbhs_nbhs (p : T) (A : set T) :
nbhs p A -> nbhs p (nbhs^~ A).
Proof.
HB.instance Definition _ := @Nbhs_isNbhsTopological.Build T
principal_nbhs_filter principal_nbhs_singleton principal_nbhs_nbhs.
HB.end.
HB.factory Record DiscreteUniform_ofNbhs T of Discrete_ofNbhs T & Nbhs T := {}.
HB.builders Context T of DiscreteUniform_ofNbhs T.
Local Open Scope relation_scope.
Local Notation d := (@discrete_ent T).
Local Lemma discrete_entourage_filter : Filter d.
Proof.
Local Lemma discrete_entourage_diagonal : forall A, d A -> diagonal `<=` A.
Proof.
Local Lemma discrete_entourage_inv : forall A, d A -> d A^-1.
Proof.
by move=> ? dA x [i _ <-]; apply: dA; exists i. Qed.
Local Lemma discrete_entourage_split_ex :
forall A, d A -> exists2 B, d B & B \; B `<=` A.
Proof.
Local Lemma discrete_entourage_nbhsE : (@nbhs T _) = nbhs_ d.
Proof.
rewrite funeqE => x; rewrite nbhs_principalE eqEsubset; split => U.
move/principal_filterP => ?; exists diagonal; first by move=> ? [w _ <-].
by move=> z /= /set_mem; rewrite /diagonal /= => <-.
case => w entW wU; apply/principal_filterP; apply: wU; apply/mem_set.
exact: entW.
Qed.
move/principal_filterP => ?; exists diagonal; first by move=> ? [w _ <-].
by move=> z /= /set_mem; rewrite /diagonal /= => <-.
case => w entW wU; apply/principal_filterP; apply: wU; apply/mem_set.
exact: entW.
Qed.
HB.instance Definition _ := @Nbhs_isUniform.Build T
discrete_ent
discrete_entourage_filter
discrete_entourage_diagonal
discrete_entourage_inv
discrete_entourage_split_ex
discrete_entourage_nbhsE.
HB.instance Definition _ := @Discrete_ofUniform.Build T erefl.
HB.end.
HB.factory Record DiscretePseudoMetric_ofUniform (R : numDomainType) T of
DiscreteUniform T := {}.
HB.builders Context R T of DiscretePseudoMetric_ofUniform R T.
Local Lemma discrete_ball_center x (eps : R) : 0 < eps ->
@discrete_ball R T x eps x.
Proof.
by []. Qed.
Local Lemma discrete_ball_sym (x y : T) (e : R) :
discrete_ball x e y -> discrete_ball y e x.
Proof.
by move=>->. Qed.
discrete_ball x e1 y -> discrete_ball y e2 z -> discrete_ball x (e1 + e2) z.
Proof.
by move=> -> ->. Qed.
Local Lemma discrete_entourageE : entourage = entourage_ (@discrete_ball R T).
Proof.
rewrite predeqE => P; rewrite uniform_discrete; split; last first.
by move=> dbP ? [?] _ <-; move: dbP; case => /= ? ?; apply.
move=> entP; exists 1 => //= z z12; apply: entP; exists z.1 => //.
by rewrite {2}z12 -surjective_pairing.
Qed.
by move=> dbP ? [?] _ <-; move: dbP; case => /= ? ?; apply.
move=> entP; exists 1 => //= z z12; apply: entP; exists z.1 => //.
by rewrite {2}z12 -surjective_pairing.
Qed.
HB.instance Definition _ :=
@Uniform_isPseudoMetric.Build R T (@discrete_ball R T)
discrete_ball_center discrete_ball_sym discrete_ball_triangle
discrete_entourageE.
Local Lemma discrete_ballE : @ball R T = @discrete_ball R T.
Proof.
HB.instance Definition _ := @Discrete_ofPseudometric.Build R T discrete_ballE.
HB.end.
Definition discrete_topology (T : Type) : Type := T.
HB.instance Definition _ (T : choiceType) :=
Choice.copy (discrete_topology T) T.
HB.instance Definition _ (T : pointedType) :=
Pointed.on (discrete_topology T).
HB.instance Definition _ (T : choiceType) :=
hasNbhs.Build (discrete_topology T) principal_filter.
HB.instance Definition _ (T : choiceType) :=
Discrete_ofNbhs.Build (discrete_topology T) erefl.
HB.instance Definition _ (T : choiceType) :=
DiscreteUniform_ofNbhs.Build (discrete_topology T).
HB.instance Definition _ {R : numDomainType} (T : choiceType) :=
@DiscretePseudoMetric_ofUniform.Build R (discrete_topology T).
Section discrete_topology.
Context {X : discreteTopologicalType}.
Lemma discrete_open (A : set X) : open A.
Proof.
Lemma discrete_set1 (x : X) : nbhs x [set x].
Proof.
Lemma discrete_closed (A : set X) : closed A.
Proof.
Lemma discrete_cvg (F : set_system X) (x : X) :
Filter F -> F --> x <-> F [set x].
Proof.
rewrite nbhs_principalE nbhs_simpl; split; first by exact.
by move=> Fx U /principal_filterP ?; apply: filterS Fx => ? ->.
Qed.
by move=> Fx U /principal_filterP ?; apply: filterS Fx => ? ->.
Qed.
End discrete_topology.